
Reference Design Guide
1200-Port Media Server

Optimizing the Performance of High Density Systems Built

Using Intel® NetStructure™ DM/V and DM/V-A Series Boards

on the Linux* Operating System

Contents

Executive Summary 1

I. Introduction 1

II. High Density (1200-Port) Media Server 2

III. Methodology 2

IV. Development Environment 3

Linux* (RedHat 7.2) Operating System 3

Intel® NetStructure™ Voice and Multifunction Series Boards 3

Software 4

V. Performance Guidelines of High Density Systems 4

Play/Record Termination 4

Programming Model 4

Using Concatenated/Index/Play Instead of 6
Issuing Multiple dx play() Commands

Calling dx stopch() 6

Optimizing Performance of Devices 6

Device Initialization 6

VI. High-Density Media Server Testing Environment 7

Hardware and Software 7

V11. Performance Results 8

Call Control 8

Play and Record 9

System Scalability: Play CPU Rate 10

System Scalability: Record CPU Rate 11

1200-Channel Play CPU Rate with extended asynchronous model 12

1200-Channel Record CPU Rate with extended asynchronous model 13

Executive Summary
In today’s economy, delivering high-density, scalable, and reliable communication solutions to market quickly is a

necessity for original equipment manufacturers (OEMs), integrators, and ISVs so they can keep the competitive edge

they need for continued success.

With the demand for enhanced services growing, large enterprises and service providers are continually breaking system

density barriers. In response to rising customer needs for low cost, high-density media servers, and to answer critical

density and performance questions, Intel has tested a 1200-port media server solution while optimizing system software

for ultra high-density systems. As a result customers can now confidently build a wide variety of sophisticated high-

density messaging, call center, conferencing and switching applications.

This Reference Design Guide will describe the high-density media server testing environment used and give performance

results as well as discuss the building blocks used to create a high-density system. It will explain the performance

guidelines for creating such high-density systems and how the performance was achieved using the Intel® NetStructure™

DM/V and DM/V-A Series of boards, the Linux* operating system, and software and applications created for

telco-grade, mission critical media servers.

I. Introduction
The market conditions of the post-dot.com burst and cut throat competition on basic services has left service providers

with reduced revenues, network over-capacity, and significant capital constraints. They are looking for new sources of

revenue while keeping their costs low. Meanwhile, medium and large enterprises are looking to improve customer

satisfaction, retention, and increase employee efficiency while reducing operational and infrastructure costs.

As a result, both enterprise and service providers are looking for innovative enhanced services using open, standards-

based building blocks. In addition, both customer types want solutions that are flexible, quickly integrateable, offer a

lower cost of ownership, and yet still provide a strong potential return on investment (ROI). To satisfy these criteria and

still reach the density levels required to support the growing needs of businesses, communications networks and solutions

must ensure scalability without adversely affecting or degrading system performance.

Media servers are the platform to deploy these enhanced services. In addition, with the emphasis on controlling costs,

the focus today is on high-density, scalable media servers with smaller footprints.

Intel provides open, standards-based building blocks to develop and deploy cost-effective high-density media servers.

The Intel® NetStructure™ DM/V Voice and DM/V-A Multifunction Series support voice processing, speech recognition,

and conferencing, and occupy a single PCI or CompactPCI* slot. Multiple boards from these series can be installed in a

single computer, reducing the amount of hardware space needed for scalable, high-density solutions.

The Linux operating system offers carrier-grade capabilities that are key to service provider and large enterprise

environments — highly efficient resource management, flexible feature enhancements, and scalability to high densities

without suffering performance degradation.

To reduce the customer’s time-to-market, Intel has developed and tested a 1200-port media server system using the

DM/V Voice and DM/V-A Multifunction Series boards, RedHat* 7.2 Linux , and Intel® Dialogic® System Release 5.1 for

Linux. Through vigorous testing and analysis focused on scalability and performance in ultra high-density solutions,

Intel engineers successfully established the optimal board parameters that let customers confidently push the density

barriers in a single system to new heights. This 1200-Port Media Server Reference Design Guide is the documentation of

their process and the subsequent performance guidelines.

1

II. The High-Density (1200-Port) Media Server
Scalability and performance are the key customer problems Intel focused on for

building, testing, and optimizing a 1200-port media server reference system. How could

Intel add more ports without affecting the high-performance its customers expect and

demand? Systems must be scaleable for the customer who wants to expand from one

T-1 or E-1 line to forty in a single box, without any performance degradation.

The latest performance results indicate that a system with ten Intel® NetStructure™

DM/V Voice Series boards (1200 channels), performing simultaneous play/record

functions, has a CPU loading of 35-38% without any performance degradation as

density goes up.1 CPU utilization has a linear correlation to the number of channels in

service, demonstrating that the architecture has excellent scalability.

III. Methodology
In configuring a 1200-port media server architecture, Intel engineers selected the Intel®

building blocks and third party components that could offer higher than normal

performance and lower CPU utilization rates. The server was configured with ten Intel

NetStructure DM/V Voice Series boards (DMV1200-4E1-PCI / DM/V1200-4E1-CPCI)

for network connectivity and voice processing, which support up to four digital network

interfaces and up to 120 ports of voice processing capability. Similar tests were per-

formed with ten DM/V-A Multifunction Series boards (DM/V1200A-4E1-PCI), which

support up to four digital network interfaces with enhanced media capabilities per

board, and include support for continuous speech processing. For a detailed features

list, read the datasheet online at http://www.intel.com/network/csp/products.

The boards were loaded into a chassis built with an Intel® Pentium® III processor, 1000

MHz CPU, and running on the RedHat 7.2 Linux operating system. Using Linux and

the Intel Dialogic System Release 5.1 for the Linux operating system gave developers

the high availability and high performance features required for carrier-grade telco,

service provider, and large enterprise solutions.

The media server was tested for scalability and performance. Intel engineers developed

a basic messaging application and tested it to a load of 1200 channels, each channel

performing continuous and simultaneous play and record. System software, including

libraries and firmware, were optimized; each was pushed to its limits to determine

system flexibility and what resources would be strained at certain density levels. Once

identified, optimizations were made and this process continued until the appropriate

density levels were reached with no performance degradation.

Various programming models were tested as well. Synchronous versus asynchronous,

single thread versus multi-thread — the engineers tested various scenarios until they

determined the combinations for optimal performance. Based on 1200 channels, Intel

engineers experimented with the number of channels per thread (i.e., 120-ports per

thread verses 240). Testing determined that, in a 1200-port configuration, 120-ports

per thread was the most efficient.

The asynchronous single-threaded programming model is the recommended model as it

showed a lower CPU utilization rate than the extended asynchronous model; and the

system demonstrated good scalability with a linear correlation between the CPU

utilization rate and number of ports.

2

Applications for a High-
Density Media Server
• Unified messaging — handles voice,

fax, and regular text messages as objects
in a single mailbox that a user can
access either via email or telephone. If a
user’s PC has multimedia capabilities, the
user can open and play voice messages.
Fax images can be saved or printed. A
user can access the same mailbox by
telephone, and the email text will be
converted to audio files and played back.

• Network call center/contact center —
a central place where customer and other
telephone calls are handled by an
organization, typically with some comput-
er automation. Call centers are deployed
by any organization that uses the tele-
phone for generating sales or providing
service.

• Interactive voice response (IVR) —
a software application that accepts a
combination of voice telephone inputs
and touch-tone keypad selections and
provides appropriate responses in the
form of voice, fax, callback, email, and
other media. IVR is usually part of a larger
application that includes database
access.

• Voice portal — a Web site or other
service that a user can reach by
telephone for information such as
weather, sports scores, or stock quotes.
After requesting information by speaking
or pressing keys, the voice portal
responds with voice information using
text-to-speech (TTS) or possibly with an
email message.

• Conferencing — lets several parties be
added to a phone conversation.

• Prepaid/debit card — a customer
purchases in advance a certain amount
of calling time or a dollar amount of credit
towards making phone calls, and the
value of the card decreases as calls are
made. The accounting is typically done in
a remote switch, which the user dials to
make calls.

• Voice mail — lets a user receive, edit,
and forward messages to one or more
voice mailboxes.

• International callback — a system for
avoiding regular phone company long-
distance charges by having a call initiated
from within the United States with the
originating caller joining in as part of a
conference call.

• Gateway switch — A gateway is a
network point that acts as an entrance
to another network. A gateway is often
associated with both a router, which
knows where to direct a given packet
of data that arrives at the gateway, and
a switch, which provides the actual path
in and out of the gateway for a given
packet.

The methodology used to create a 1200-port media server is documented for

programmers to take into account when writing their applications.

• Play/Record Termination

• Programming Model

• Using Concatenated/Index Play Instead of Issuing Multiple dx_play() Commands

• Calling dx_stopch()

• Optimizing Performance of Devices

• Device Initialization

These guidelines are covered in greater detail in the Performance Guidelines for

High Density Systems section of this guide.

IV. Development Environment
To create a media server that exceeds the density barriers of prior systems, Intel

engineers selected the Intel and third-party products that are geared toward the

development of high availability, high performance, carrier-grade media servers.

Linux (RedHat 7.2) Operating System

The 1200-port media server was built on the RedHat 7.2 Linux OS using the Intel

Dialogic SR 5.1 for Linux, which supports increasingly high-density, high availability

communications systems. The modular architecture supports rapid development cycles

and boasts a well-defined, standard set of interfaces designed to ensure hardware

compatibility. Not only has the density been dramatically increased, but also better

system performance has been achieved. The high density and performance of these

systems makes possible the development of a wide variety of sophisticated messaging,

call center, conferencing and switching applications.

Intel® NetStructure™ Voice and Multifunction Series Boards

The DM/V and DM/V-A board series are based on the powerful DM3 architecture — a

flexible, modular, and open architecture platform for developing leading-edge call

processing applications and supporting the high-density, high performance needs of

media servers. Developers can develop systems with densities ranging from 48 to 1200

ports of T-1/E-1 network connectivity, plus on-board voice, speech, and conferencing

media capabilities æ all in a single chassis.

The DM/V-A board series features innovative continuous speech processing technology,

a DSP-based signal processing solution optimized for speech recognition that enables a

friendly user interface and seamless integration of speech recognition software from the

leading speech technology vendors. On-board conferencing offers one of the industry’s

most advanced feature sets, providing a pleasant conferencing experience for the end-

user. An optimized state-of-the-art algorithm prevents noise build-up and echo in the

conference. It also equalizes participant voice volumes, and offers optional DTMF

clamping to limit audible enter and exit tones. On-board conferencing enables Intel

customers to deploy network-grade conferencing systems with comparable features,

audio quality and density as typical proprietary solutions at significantly reduced costs.

3

High Density Media Server
Testing Environment
• Hardware: Intel Pentium III processor,

1000 MHz processor CPU

• Operating System: RedHat Linux 7.2

• Development Software: Intel Dialogic
SR 5.1 for Linux

• Chassis: Transduction Berta 1000

• RAM: 512 MB SDRAM PC133

• Hard Drive: Seagate ST330620A-30GB
IDE (7200 rpm, 8.5ms Seek Time)

• Communications/telephony boards: Up
to 10 Intel NetStructure DM/V or DM/V-A
Series boards: DM/V1200A-4E1-PCI or
DM/V1200-4E1-CPCI. Although the
results described in this document come
from a system with E-1 boards, similar
programming guidelines and results
should also apply to T-1 boards.

Software

System Release 5.1 for Linux unlocks rich multimedia resources (voice, fax, speech,

and conferencing) and a full complement of digital network interfaces on the RedHat

7.2 Linux operating system for the high-density Intel DM3-based board products. In

addition, SR 5.1 for Linux enables solutions using the CompactPCI* form factor,

supporting peripheral hot swap (PHS) SNMP, on-demand diagnostics, single board

start/stop operation, firmware tracing, faster system download and initialization, and

more.

The remainder of this Reference Design Guide details performance guidelines, testing

environment, and performance results for the 1200-port media server. Readers who

want additional information about creating a 1200-port media server are encouraged to

contact an Intel technical sales representative or an account manager.

V. Performance Guidelines for
High Density Systems

When programming applications for high-density systems containing DM/V Voice
and DM/V-A Multifunction Series boards, Intel suggests several guidelines to
maximize the performance of the system. These guidelines are discussed in the
following sections:

• Play/Record Termination

• Programming Model

• Using Concatenated/Index Play Instead of Issuing Multiple dx_play() Commands

• Calling dx_stopch()

• Optimizing Performance of Devices

• Device Initialization

Play/Record Termination

Terminating Events

Use digit mask termination (DX_DIGMASK) in the Termination Parameter Table data

structure (DV_TPT), to terminate events instead of getting digits via the Call Status

Transition data structure (DX_CST) and stopping I/O functions on the channel via a

dx_stopch() call. The DV_TPT structure specifies the termination conditions.1

Maximum Function Time

Use maximum function time (DX_MAXTIME) in the Termination Parameter Table

data structure (DV_TPT) instead of specifying the number of bytes allocated for

recording using io_length in the I/O Transfer Table data structure (DX_IOTT). The

DV_TPT structure specifies termination conditions for recording.2

Maximum function time is equivalent to play/record duration.

Programming Model

To maximize performance, use the asynchronous single-threaded programming model

using the sr_waitevt() function. 3

4

DM/V Voice Series
• Supports up to 120 ports of voice

processing and four digital network
interfaces in a single slot and scales
up to 1200 ports per system

• Supports patented perfect call outbound
call progress analysis that accurately
discriminates human speech from
recorded human voice and network
noise

• Downloadable signal and call processing
firmware provides the flexibility to
enhance applications as needs change

• Deploys on either industry-standard PCI
or CompactPCI form factor

• Allows a choice of T-1 or E-1 digital
network interfaces with internationally
approved CAS and ISDN Primary Rate

• Unified call control access through the
Global Call interface provides worldwide
application portability and helps shorten
development time

DM/V-A Multifunction
Board Series
Contains all the features and functionality of
the DM/V board series, plus:

• Supports continuous speech processing

• Provides an onboard high-density
conferencing solution that can be
used to deploy network-grade
conferencing systems

• Supports G.726, GSM, and
TrueSpeech* voice coders

5

The following topics provide more information about the programming model.

Using the Asynchronous Single-Threaded Model

The asynchronous single-threaded model is the recommended programming

model for this type of system. The application is then responsible for retrieving

and handling the events in a suitable manner. For example, applications that

interact with a database may need to dispatch events to another thread so that

lengthy operations do not block the event polling thread. This approach allows you

to implement the event-handling scheme to achieve optimal performance.

NOTE: The signal programming model is not supported.

Number of Threads

The best combination of threads and channels used depends on the application. As

stated above, we recommend a single thread for the handling of DM3 events. Fine-

tuning the programming model to achieve the best performance may be necessary. For

example, separate threads dedicated to system I/O may help system performance. On

the other hand, if the application uses the record/play to/from memory feature, adding

such a dedicated thread may not improve overall system performance.

In general, for Linux systems, our results show that fewer threads yield better results

if there is no extensive disk activity. However, this is only a generic recommendation.

Again, you should always fine-tune your applications according to their specific

characteristics to achieve the best results.

Number of Processes

There are two considerations:

1. Determine the correct number of processes for your system based on your

service availability requirements. You should do this because separate processes

run independently. If one process encounters an error condition or is out of service,

the rest will still be available. However, if the same process uses all resources and

this process goes out of service, the whole system will be unavailable.

2. More processes will add overhead to the system and thus reduce overall

system performance. In general, you should try to avoid large numbers of

processes in one system. The overhead for the operating system to handle multiple

processes can affect system performance.

Therefore, you need to maintain a balance based on service availability and overall

system performance. Try different combinations to see what works best.

NOTE: The same device cannot be accessed via multiple processes.

Minimize Disk I/O

To maximize performance in high-density systems, minimize disk I/O operations (for

example, play and record from memory). Intel provides an API that can play from and

record to memory instead of disk file4. Intel recommends that the application manage

its disk I/O in a way to minimize disk I/O activity during operation to achieve better

system performance.

Using Concatenated/Index Play Instead of Issuing Multiple
dx_play() Commands

Instead of using consecutive play commands, you can use the DX_IOTT input transfer

table to describe a single data transfer from memory blocks or a custom device.

DX_IOTT is a link list that can be used to indicate which file or segment of a file

(using lseek() to set the offset) is to be played in a sequence. This will reduce the

number of dx_play() commands issued. This is also known as index play or

concatenated play. A similar principle applies to record.5

Calling dx_stopch()

For the best performance, dx_stopch() should be used in asynchronous mode
rather than synchronous mode. Issuing this function call in asynchronous mode
will not block and wait for termination of the function, and will allow the
processing of other devices and events while the specified channel terminates.
For applications to achieve the best possible performance and throughput,
asynchronous programming techniques should be used when the option is
provided.6

Optimizing Performance of Devices

If you open and close devices or your application uses Global Call to dynamically open

and close devices as needed, application performance may be affected. To optimize

performance, we recommend that you open all DM3 devices during application

initialization and keep them open for the duration of the application. All devices should

be in an idle state before they are closed, and all devices should be closed at the end of

the application.

Device Initialization

The following recommendation from the Compatibility Guide for the Intel Dialogic R4

API on DM3 Products for Linux should be used as a guideline for device initialization.

Please refer to the Compatibility Guide for details.

The xx_open() functions for the Voice (dx), Global Call (gc), Network (dt), and Fax

(fx) APIs are asynchronous in this release of R4 on DM3, unlike the standard R4

versions, which are synchronous. This should usually have no impact on an application,

except in cases where a subsequent function calls on a device that is still initializing,

that is, is in the process of opening. In such cases, the initialization must be finished

before the follow-up function can work. The function will not return an error, but it is

blocked until the device is initialized. For instance, if your application called the

following two functions:

dx_open()

dx_getfeaturelist()

The dx_getfeaturelist() is blocked until the initialization of the device is completed

internally, even though dx_open() has already returned success. In other words, the

initialization dx_open() may appear to be complete, but, in truth, it is still going on in

parallel. With some applications, this may cause slow device-initialization performance.

6

7

Fortunately, you can avoid this particular problem quite simply by reorganizing the way

the application opens and then configures devices. The recommendation is to do all

xx_open() functions for all channels before proceeding with the next function. For

example, you would have one loop through the system devices to do all the xx_open()

functions first, and then start a second loop through the devices to configure them,

instead of doing one single loop where a xx_open() is immediately followed by other

API functions on the same device.

With this method, by the time all xx_open() commands are completed, the first chan-

nel will be initialized, so you won’t experience problems. This change is not necessary

for all applications, but if you experience poor initialization performance, you can gain

back speed by using this hint.

VI. High-Density Media Server Testing
Environment

This section describes how Intel built the media server used for the performance tests.

Hardware and Software

This section describes what was used in testing the high-density media server. The
specifications are given for the PCI form factor.

PCI Form Factor

Hardware: Intel Pentium III processor, 1000 MHz processor CPU

Operating System: Red Hat* 7.2 Linux

Development Software: Intel Dialogic SR 5.1 for Linux

Chassis: Transduction Berta 1000

RAM: 512 MB SDRAM PC133

Hard Drive: Seagate ST330620A-30GB IDE (7200 rpm, 8.5ms Seek Time)

Boards: Up to ten Intel NetStructure DM/V Voice and DM/V-A Multifunction Series

boards: DM/V1200A-4E1-PCI or DM/V1200-4E1-CPCI. Although the results

described in this document come from a system with E-1 boards, similar programming

guidelines and results should also apply to T-1 boards.

VII. Performance Results
This section describes the performance characterization application that was tested and

gives performance measurements. The performance characterization application was

developed following the guidelines listed in Section VI. High Density Media Server

Testing Environment. The application covers

• call control

• play and record

Call Control

The call control application was designed to achieve the highest possible call control

completion rate. The call control completion rate was defined as the number of calls

that were completed within an hour for one simple E-1 board without inter-call delay

and intra-call delay.

Design Considerations

The application used here was designed with the following considerations:

• Minimized disk I/O: all plays and records are done through memory

• The application was based on R4 APIs

• The application was written using the extended asynchronous mode

• No call setup precedes play or record

Call Control Sequence

In this call control application, the system does the following:

1. Both sides open channels

2. The incoming side waits for the call

3. The outbound side makes the call

4. The call is connected

5. The inbound side detects the connection and subsequently drops the call

6. The outbound side receives the disconnect event and drops the call

The following picture shows the sequence of the system’s response to an incoming
call.

8

Call Originator Media Server

Make Call Accept call

Optional wait
time

Drop the
call

Disconnect
event

Receive
disconnect
event and
drop the call

9

1200-Channel Call Control Results

The call control completion rate defined above was measured: 2,116,800 calls per hour

per E-1 board (120 channels). In other words, it takes .20 seconds to finish one call for

each channel.

This number was obtained using five boards on the inbound side and five boards on the

outbound site, connected by crossover cable, on the same ten-board system.

Play and Record

Play and record are the basic functions of any media server application. High

performance on a high-density system is critical for a successful media server

application. The sample application stressed the system by doing simultaneous play

or record on all channels in the testing system.

CPU utilization rate and scalability of the system were measured. Two different event-

processing models have been used. The first is the asynchronous single-thread model

with sr_waitEvt() and the second is the extended asynchronous model with

sr_waitEvtEx(). The results show a significant difference between the two – especially

for high-density systems.

The current implementation of sr_waitEvtEx() does a linear search to match events

with each device handle array supplied with each call to sr_waitevtEx(). With

sr_waitEvt(), there is no such overhead – the Standard Runtime Library (SRL) simply

returns the next available event on any device to the application. The application is free

to implement its own event matching mechanism. In our case, we used the Standard

Template Library (STL) map class, which has a more efficient implementation than just

doing a linear search, and so this gave a better result.

This section provides test results that show the right combination of threads and

channels for the extended asynchronous model with sr_waitEvtEx().

The data for the asynchronous single-thread model (which we recommend) shows that

for a ten-board system, play and record will utilize 24% and 27% CPU time – versus

36% and 38% for the extended asynchronous model. And the system demonstrates

good scalability: the correlation between the CPU utilization rate and number of

channels is linear.

The following sections and figures report performance measurements from a system

built as described in Section VI. High Density Media Server Testing Environment.

System Scalability: Play CPU Rate

Figure 1 shows the comparison between the recommended asynchronous model

with sr_waitevt() and the extended asynchronous model with sr_waitEvtEX(). The

recommended model clearly yields better results.

The system scales well for play CPU rate. It linearly correlates to the number of

oards in the system. Figure 1 shows the CPU rate for an application running on one,

two, four, six, eight, and ten boards.

10

100

90

80

70

60

50

40

30

20

10

0
120 240 420 720 960 1200

C
P

U
 U

til
iz

at
io

n

Channels per Thread

Figure 1: Comparison of PLAY CPU Rate and Scalability for Different Programming Models

11

System Scalability: Record CPU Rate

Figure 2 shows the comparison between the recommended asynchronous model

with sr_waitevt() and the extended asynchronous model with sr_waitEvtEX().

The recommended model clearly yields better results.

The system scales well for record CPU rate. It linearly correlates to the number of

boards in the system. Figure 2 shows the CPU rate for an application running on one,

two, four, six, eight, and ten boards.

100

90

80

70

60

50

40

30

20

10

0
120 240 420 720 960 1200

C
P

U
 U

til
iz

at
io

n

Channels per Thread

Figure 2: Comparison of RECORD CPU Rate and Scalability for Different Programming Models

1200-Channel Play CPU Rate with the extended asynchronous
model

Figure 3 shows the different CPU rates versus the total threads running. When there is

more than one thread running, each thread handles an equally distributed load. For

example, if there are two threads running, each will handle 600 simultaneous plays.

12

100

90

80

70

60

50

40

30

20

10

0
120 240 420 720 960 1200

C
P

U
 U

til
iz

at
io

n
%

Channels per Thread

Figure 3: 1200-Channel Play CPU Rate

13

1200-Channel Record CPU Rate with the extended asynchronous
model

Figure 4 shows the different CPU rates versus the total threads running. When there is

more than one thread running, each thread handles an equally distributed load. For

example, if there are two threads running, each will handle 600 simultaneous records.

Performance tests and ratings are measured using specific computer systems and/or components and
reflect the approximate performance of Intel products as measured by those tests. Any difference in
system hardware or software design or configuration may affect actual performance. Buyers should
consult other sources of information to evaluate the performance of systems or components they are
considering purchasing. For more information on performance tests and on the performance of Intel
products, reference www.intel.com/procs/perf/limits.htm, or call (U.S.) 1-800-628-8686 or
1-916-356-3104.

1 Achieved in the testing environment described in Section VI. The newer DM/V-A Multifunction Series
boards exhibit similar performance characteristics.

2. See the Voice Software Reference: Programmer’s Guide for Linux for more information about the
DV_TPT and DX_CST data structures and recording.

3. See the Voice Software Reference: Programmer’s Guide for Linux for more information about the
DV_TPT and DX_IOTT data structures and recording.

4. See the Voice Software Reference: Standard Runtime Library for Linux for more information about the
asynchronous programming model.

5. Refer to the description of dx_rec() in the Voice Software Reference: Programmer’s Guide for Linux
6. For details, please refer to the Voice Software Reference: Programmer’s Guide for Linux.
7. See the Voice Software Reference: Programmer’s Guide for Linux for more information about the

dx_stopch() function.

100

90

80

70

60

50

40

30

20

10

0
120 240 420 720 960 1200

C
P

U
 U

til
iz

at
io

n
%

Channels per Thread

Figure 4: 1200-Channel Record CPU Rate

Intel Corporation
1515 Route Ten
Parsippany, NJ 07054
Phone: 1-973-993-3000
Fax: 1-973-993-3093

For more information
To learn more, visit our site on the
World Wide Web at www.intel.com

Printed in the USA
Copyright © 2002 Intel Corporation
All rights reserved.

00-7949-002 08/02

Information in this document is provided in
connection with Intel® products. No license,
express or implied, by estoppel or otherwise, to
any intellectual property rights is granted by this
document. Except as provided in Intel’s Terms
and Conditions of Sale for such products, Intel
assumes no liability whatsoever, and Intel
disclaims any express or implied warranty,
relating to sale and/or use of Intel® products
including liability or warranties relating to fitness
for a particular purpose, merchantability, or
infringement of any patent, copyright or other
intellectual property right. Intel® products are not
intended for use in medical, life saving, or life
sustaining applications. Intel may make changes
to specifications and product descriptions at any
time, without notice.

*Other names and brands may be claimed as the
property of others.

Intel, Intel Dialogic, Intel NetStructure, Pentium
III, and the Intel logo are trademarks or registered
trademarks of Intel Corporation or its subsidiaries
in the United States and other countries.

